A. Definisi permutasi
Permutasi adalah penyusunan kembali suatu kumpulan objek dalam urutan yang berbeda dari urutan yang semula.
Jika terdapat suatu susunan abjad abcd, maka susunan itu dapat dituliskan kembali dengan urutan yang berbeda: acbd, dacb, dan seterusnya. Selengkapnya ada 24 cara menuliskan keempat huruf tersebut dalam urutan yang berbeda satu sama lain.
abcd abdc acbd acdb adbc adcb
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba
Setiap susunan baru yang tertulis mengandung unsur-unsur yang sama dengan susunan semula abcd, hanya saja ditulis dengan urutan yang berbeda. Maka setiap susunan baru yang memiliki urutan berbeda dari susunan semula ini disebut dengan permutasi dari abcd.
B. Menghitung Banyaknya Permutasi yang Mungkin
Untuk membuat permutasi dari abcd, dapat diandaikan bahwa terdapat empat kartu bertuliskan masing-masing huruf, yang hendak kita susun kembali. Juga terdapat 4 kotak kosong yang hendak kita isi dengan masing-masing kartu:
Maka kita dapat mengisi setiap kotak dengan kartu. Tentunya setiap kartu yang telah dipakai tidak dapat dipakai di dua tempat sekaligus. Prosesnya digambarkan sebagai berikut:
1. Di kotak pertama, kita memiliki 4 pilihan kartu untuk dimasukkan.
2. Sekarang, kondisi kartunya tinggal 3, maka kita tinggal memiliki 3 pilihan kartu untuk dimasukkan di kotak kedua.
3. Karena dua kartu telah dipakai, maka untuk kotak ketiga, kita tinggal memiliki dua pilihan.
4. Kotak terakhir, kita hanya memiliki sebuah pilihan.
5. Kondisi terakhir semua kotak sudah terisi.
Di setiap langkah, kita memiliki sejumlah pilihan yang semakin berkurang. Maka banyaknya semua kemungkinan permutasi adalah 4×3×2×1 = 24 buah. Jika banyaknya kartu 5, dengan cara yang sama dapat diperoleh ada 5×4×3×2×1 = 120 kemungkinan. Maka jika digeneralisasikan, banyaknya permutasi dari n unsur adalah sebanyak n!.
C. Permutasi dari unsur-unsur yang berbeda
Perhatikan susunan angka-angka yang terdiri atas 4, 5, dan 6 berikut
456 465 546 564 645 654
Letak angka dalam susunan tersebut mempengaruhi nilai bilangan yang terbentuk. Bilangan-bilangan 456 465. Demikian juga untuk susunan yang lain. Banyak susunan angka ratusan yang dapat dibuat dari 3 buah angka, yaitu 4, 5, dan 6 sebanyak 6 buah. Bagaimana susunanya jika angka-angka yang tersedia 4,5,6,dan 7? Susunan angka ratusan yang mungkin dari 4 angka, yaitu 4,5,6 dan 7 adalah sebagai berikut:
456 465 546 564 645 654
457 475 547 574 745 754
467 476 647 674 746 764
567 576 657 675 756 765
Ternyata ada 24 cara
Susunan obyek-obyek yang memerhatikan susunan seperti ini dinamakan permutasi
Dari permasalahan di atas diperoleh
1. Jika angka-angka disusun terdiri atas 3 angka dari 3 angka yang tersedia, banyak susunannya
2. Jika angka-angka disusun terdiri atas 3 angka dari 4 angka yang tersedia, banyak susunanya
Aturan ini dapat diperluas sebagai berikut.
3. Jika kalian teruskan, angka-angka disusun terdiri atas k angka dari n angka yang tersedia, banyak susunanya adalah
Jadi diperoleh kesimpulan sebagai berikut
Contoh:
Di dalam sebuah kelas, akan dibentuk kepengurusan yang terdiri atas ketua, sekretaris, dan bendahara kelas. Berapa banyak cara 6 calon yang akan memperebutkan ketiga posisi tersebut?
Penyelesaian:
Karena posisi yang diperebutkan masing-masing berbeda, kasus ini dapat dikerjakan dengan permutasi 3 unsur dari 6 unsur yang tersedia
D. Permutasi Memuat Beberapa Unsur yang Sama
Pada pembahasan sebelumnya, permutasi memuat unsur yang berbeda. Sekarang, perhatikan unsur penyusun “APA” yaitu A, P, A.
Huruf A pada urutan pertama dan ketiga meskipun dibalik akan mempunyai makna yang sama. Misalkan A1 dan A3 masing-masing adalah huruf A yang pertama dan ketiga.
1. Permutasi 3 unsur dari 3 unsur yang tersedia, yaitu A1, P, A3 (A1 dan A3 diandaikan berbeda) adalah
3P3 = 3! = 3 x 2 x 1= 6
Dengan demikian, diperoleh susunan dalam 3 kelompok berikut
a) A1PA3
A3PA1
b) A1A3P
A3A1P
c) PA1A3
PA3A1
2. Permutasi 3 unsur dari 3 unsur yang tersedia, yaitu A1PA3 (A1 dan A3 diandaikan sama) susunanya adalah
APA AAP PAA
Jadi hanya terdapat 3 cara. Hal ini terjadi karena pada setiap kelompok terdapat 2! = permutasi pada penyusunan 2 huruf A yang sama, yaitu A1 dan A3.
Dengan demikian, permutasi 3 unsur, dengan 2 unsur yang sama dari 3 unsur adalah
Secara umum dapat disimpulkan sebagai berikut.
Aturan ini dapat diperluas sebagai berikut.
Contoh :
1. Tentukan banyak susunan huruf yang dibentuk dari unsur-unsur huruf pembentuk kata PENDIDIKAN
2. Misalnya terdapat 6 bendera dengan rincian 2 bendera berwarna merah, 3 bendera berwarna putih, dan 1 berwarna biru.
Berapa banyak susunan yang dapat dibuat untuk menyusun bendera itu secara berjajar?
Penyelesaian:
1. PENDIDIKAN
Unsur yang tersedia ada 10
Unsur yang sama adalah
1). k1 = 2, yaitu huruf N ada 2;
2). k2 = 2, yaitu huruf D ada 2;
3). k3 = 2, yaitu huruf I ada 2.
Jadi
2. Banyak susunan yang dapat dibuat adalah
D. Permutasi siklis
Perhatikan gambar berikut
Perhatikan susunan melingkar pada gambar I. Susunan tersebut dapat dikatakan sebagai susunan dari ABC, BCA, CAB. Dengan demikian, susunan ABC, BCA, dan CAB pada dasarnya merupakan satu susunan yang sama. Kemudian, jika kita memerhatikan gambar 2, kita menjumpai susunan ACB, CBA, BAC adalah suatu susunan yang sama. Secara keseluruhan susunan itu ada 2 macam, yaitu
Susunan 1 : ABC, BCA, CAB
Susunan 2 : ACB, CBA, BAC
Penenpatan pada unsur-unsur dalam permutasi seperti inilah yang disebut permutasi siklis. Jadi permutasi siklis adalah permutasi yang disusun secara melingkar.
Untuk menentukan bentuk susunan n objek yang disusun secara melingkar maka tentukan sebuah titik yang dianggap sebagai titik tetap. Kemudian, sisanya dianggap sebagai penyusunan (n - 1) unsur dari (n-1) unsur yang berbeda.
Dengan demikian dapat dikatakan sebagai berikut.
Jika terdapat 3 objek disusun secara melingkar, banyak susunan yang mugkin yaitu 2! = (3- 1)!
Jika terdapat 4 unsur disusun secara melingkar , banyak susunan yang mugkin adalah 3!= (4 – 1)! Dan seterusnya. Misalkan terdapat n unsur yang berbeda disusun secara melingkar. Banyak susunan dapat ditentukan dengan permutasi siklis dengan aturan
Contoh:
Sebanyak 6 orang mengadakan rapat. Mereka duduk menghadap sebuah meja bundar. Berapakah banyak cara mereka menempati kursi yang disusun melingkar itu?
Penyelesaian:
Banyak cara mereka menempati kursi adalah
Psiklis = (6 - 1)! = 5! = 120 cara.